If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=2881
We move all terms to the left:
x^2-(2881)=0
a = 1; b = 0; c = -2881;
Δ = b2-4ac
Δ = 02-4·1·(-2881)
Δ = 11524
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11524}=\sqrt{4*2881}=\sqrt{4}*\sqrt{2881}=2\sqrt{2881}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2881}}{2*1}=\frac{0-2\sqrt{2881}}{2} =-\frac{2\sqrt{2881}}{2} =-\sqrt{2881} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2881}}{2*1}=\frac{0+2\sqrt{2881}}{2} =\frac{2\sqrt{2881}}{2} =\sqrt{2881} $
| 16y-24y+16=-24 | | 7a+3a=aa=6 | | 10.8*35=x | | x-(0.23x)=144 | | -7+4x-2x+2=1x-2 | | 36=7v–13 | | 21=21=7x | | 4(x-2=3 | | 7(x-11)-3x=33 | | 1/35=10.8/x | | -18=2x+3 | | 2*(3x-4)+5=2(2+4x)-5 | | -4=2r | | 7x+18=-45 | | -11m=10 | | 3x-20+1x-9+1x-1=180 | | 4(-2+3)=-5x | | x+2x-7=3x-2 | | 164x-1=82x-1 | | -4=7-3p | | 3(m+4)=m-8 | | 2/5-4/5=1/3x+7/3x | | 12=x+17 | | 12x-11=2x+5 | | d(250^2-d^2)-5602254=0 | | 4r−3=17 | | 6y=336 | | X+y=780.10+0.20=11.30 | | 11=5-8m | | 4h+8=20 | | 3x/5-2/5=x+3+2/5 | | x+9+x+3+x=3=180 |